Advertisements
Advertisements
प्रश्न
Solve : `[3^x]^2` : 3x = 9 : 1
उत्तर
`[3^x]^2` : 3x = 9 : 1
⇒ `[3^x]^2/3^x = 9/1`
⇒ `[3^x]^2 = 9 xx 3^x`
⇒ `[3^x]^2 = 3^2 xx 3^x`
⇒ `[3^x]^2 = 3^(x + 2)`
We know that if bases are equal, the powers are equal.
⇒ x2 = x + 2
⇒ x2 - x - 2 = 0
⇒ x2 - (2 - 1) x - 2 = 0
⇒ x2 - 2x + x - 2 = 0
⇒ x( x - 2 ) + 1( x - 2 ) = 0
⇒ ( x + 1 )( x - 2 ) = 0
⇒ x + 1 = 0 or x - 2 = 0
⇒ x = - 1 or x = 2.
APPEARS IN
संबंधित प्रश्न
Solve for x : 25x-1 = 4 23x + 1
Solve for x : (49)x + 4 = 72 x (343)x + 1
Find x, if : `sqrt( 2^( x + 3 )) = 16`
If 4x + 3 = 112 + 8 × 4x, find the value of (18x)3x.
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
Evaluate the following:
`(1 - 15/64)^(-1/2)`
Evaluate the following:
`(8/27)^((-2)/3) - (1/3)^-2 - 7^0`
Solve for x:
`sqrt((8^0 + 2/3)` = (0.6)2-3x
Solve for x:
9x+4 = 32 x (27)x+1
If 2x = 3y = 12z ; show that `(1)/z = (1)/y + (2)/x`.