Advertisements
Advertisements
प्रश्न
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
उत्तर
We need to prove that
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
LHS =
= `x^[a(b - c ) - b( a - c )] ÷ x^(bc)/x^(ac)`
= `x^( ab - ac - ab + bc ) ÷ x^( bc - ac )`
= `x^( ab - ac - ab + bc - bc + ac )`
= `x^0`
= 1
= RHS
APPEARS IN
संबंधित प्रश्न
Solve for x : (a3x + 5)2. (ax)4 = a8x + 12
Solve for x:
`2^(3x + 3) = 2^(3x + 1) + 48`
If 3x + 1 = 9x - 3 , find the value of 21 + x.
Evaluate the following:
`(4^3 xx 3^7 xx 5^6)/(5^8 xx 2^7 xx 3^3)`
Evaluate the following:
`(12^2 xx 75^-2 xx 35 xx 400)/(48^2 xx 15^-3 xx 525)`
Evaluate the following:
`9^(5/2) - 3 xx 5^0 - (1/81)^((-1)/2)`
Solve for x:
`sqrt((8^0 + 2/3)` = (0.6)2-3x
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`