Advertisements
Advertisements
प्रश्न
If ax = b, by = c and cz = a, prove that : xyz = 1.
उत्तर
We are given that
ax = b, by = c and cz = a
Consider the equation
ax = b
⇒ axyz = byz [ raising to the power yz on both sides ]
⇒ axyz = (by)z
⇒ axyz = cz [ ∵ by = c ]
⇒ axyz = cz
⇒ axyz = a [ ∵ cz = a ]
⇒ axyz = a1
⇒ xyz = 1
APPEARS IN
संबंधित प्रश्न
Find x, if : `( sqrt(3/5))^( x + 1) = 125/27`
Solve for x : 9x+2 = 720 + 9x
Solve for x : (a3x + 5)2. (ax)4 = a8x + 12
Find the values of m and n if :
`4^(2m) = ( root(3)(16))^(-6/n) = (sqrt8)^2`
Solve for x:
2x + 3 + 2x + 1 = 320
Solve for x:
1 = px
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
If 2400 = 2x x 3y x 5z, find the numerical value of x, y, z. Find the value of 2-x x 3y x 5z as fraction.
If 2x = 3y = 12z ; show that `(1)/z = (1)/y + (2)/x`.
Prove the following:
`sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)` = 1