Advertisements
Advertisements
प्रश्न
Find the values of m and n if :
`4^(2m) = ( root(3)(16))^(-6/n) = (sqrt8)^2`
उत्तर
`4^(2"m") = ( root(3)(16))^(-6/"n") = (sqrt8)^2`
⇒ `4^(2"m") = (sqrt8)^2` ....(1)
and
`(root(3)(16))^(-6/n) = (sqrt8)^2` ....(2)
From (1)
`4^(2"m") = (sqrt8)^2`
⇒ `(2^2)^(2"m") = (sqrt(2^3))^2`
⇒ `2^(4"m") = [(2^3)^(1/2)]^2`
⇒ `2^(4"m") = [ 2^( 3 xx 1/2 )]^2`
⇒ `2^(4"m") = 2^( 3 xx 1/2 xx 2)`
⇒ `2^(4"m") = 2^3`
⇒ 4m = 3
⇒ m = `3/4`
From (2), We have
`(3sqrt(16))^(-6/"n") = (sqrt8)^2`
⇒ `( root(3)(2 xx 2 xx 2 xx 2))^(-6/"n") = (sqrt( 2 xx 2 xx 2))^2`
⇒ `( root(3)(2^4))^(-6/"n") = ( sqrt(2^3))^2`
⇒ `[(2^4)^(1/3)]^(-6/"n") = [(2^3)^(1/2)]^2`
⇒ `[2^(4/3)]^(-6/"n") = [2^(3/2)]^2`
⇒ `2^( 4/3 xx ( - 6/"n" ) = 2^(3/2 xx 2)`
⇒ `2^(-8/"n") = 2^3`
⇒ `-8/"n" = 3`
⇒ ` "n" = -8/3 "Thus m" = 3/4"n" = - 8/3`
APPEARS IN
संबंधित प्रश्न
If 5x + 1 = 25x - 2, find the value of 3x - 3 × 23 - x.
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
Solve for x:
3 x 7x = 7 x 3x
Solve for x:
2x + 3 + 2x + 1 = 320
Solve for x:
22x+3 - 9 x 2x + 1 = 0
Solve for x:
p3 x p-2 = px
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1