Advertisements
Advertisements
प्रश्न
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
उत्तर
Let ax = by = cz = k
∴ a = `k^(1/x) ; b = k^(1/y) ; c = k^(1/z)`
Also, We have b2 = ac
∴ `( k^(1/y))^2 = ( k^(1/x)) xx ( k^(1/z))`
⇒ `k^(2/y) = k^( 1/x + 1/z )`
⇒ `k^(2/y) = k^[ z + x ]/[ xz ]`
Comparing the powers we have
`2/y = [ z + x ]/[ xz ]`
⇒ `y = [ 2 xz ]/[ z + x ]`
APPEARS IN
संबंधित प्रश्न
Solve : 8 x 22x + 4 x 2x + 1 = 1 + 2x
Solve for x : `(81)^(3/4) - (1/32)^(-2/5) + x(1/2)^(-1).2^0 = 27`
If 4x + 3 = 112 + 8 × 4x, find the value of (18x)3x.
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
If 3x + 1 = 9x - 3 , find the value of 21 + x.
Evaluate the following:
`9^(5/2) - 3 xx 5^0 - (1/81)^((-1)/2)`
Solve for x:
3 x 7x = 7 x 3x
Solve for x:
1 = px
Solve for x:
22x + 2x +2 - 4 x 23 = 0
If ax = by = cz and abc = 1, show that
`(1)/x + (1)/y + (1)/z` = 0.