Advertisements
Advertisements
प्रश्न
If 5-P = 4-q = 20r, show that : `1/p + 1/q + 1/r = 0`
उत्तर
Let 5-P = 4-q = 20r = k
5-P = k ⇒ 5 = `k^(-1/p) [ ∵ a^p = b^q ⇒ a = b^(q/p) ]`
4-q = k ⇒ 4 = `k^(-1/q) [ ∵ a^p = b^q ⇒ a = b^(q/p) ]`
20r = k ⇒ 20 = `k^(1/r) [ ∵ a^p = b^q ⇒ a = b^(q/p) ]`
5 x 4 = 20
⇒ `k^(-1/p) xx k^(-1/q) = k^(1/r)`
⇒ `k^( - 1/p- 1/q) = k^(1/r)`
⇒ `k^0 = k^(1/p + 1/q + 1/r)`
If bases are equal, powers are also equal.
⇒ `1/p + 1/q + 1/r = 0`
APPEARS IN
संबंधित प्रश्न
Find x, if : `(root(3)( 2/3))^( x - 1 ) = 27/8`
Solve : `(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
Solve for x: `4^(x-1) × (0.5)^(3 - 2x) = (1/8)^-x`
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
Solve : 3x-1× 52y-3 = 225.
Evaluate the following:
`(4^3 xx 3^7 xx 5^6)/(5^8 xx 2^7 xx 3^3)`
Solve for x:
`sqrt((3/5)^(x + 3)) = (27^-1)/(125^-1)`
If a = `2^(1/3) - 2^((-1)/3)`, prove that 2a3 + 6a = 3
If ax = by = cz and abc = 1, show that
`(1)/x + (1)/y + (1)/z` = 0.
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1