Advertisements
Advertisements
प्रश्न
Find x, if : `(root(3)( 2/3))^( x - 1 ) = 27/8`
उत्तर
`(root(3)( 2/3))^( x - 1 ) = 27/8`
`[(2/3)^(1/3)]^( x - 1 ) = 3^3/2^3`
⇒ `(2/3)^[( x - 1 )/3] = (3/2)^3`
⇒ `(2/3)^[( x - 1 )/3] = (2/3)^-3`
We know that if bases are equal, the powers are equal
⇒ `[ x - 1 ]/3 = -3`
⇒ x - 1 = - 9
⇒ x = - 9 + 1
⇒ x = - 8
APPEARS IN
संबंधित प्रश्न
If 3x + 1 = 9x - 3 , find the value of 21 + x.
Evaluate the following:
`(27)^(2/3) xx 8^((-1)/6) ÷ 18^((-1)/2)`
Evaluate the following:
`16^(3/4) + 2(1/2)^-1 xx 3^0`
Solve for x:
3 x 7x = 7 x 3x
Solve for x:
`sqrt((8^0 + 2/3)` = (0.6)2-3x
Find the value of k in each of the following:
`root(4)root(3)(x^2)` = xk
Find the value of k in each of the following:
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1