Advertisements
Advertisements
Question
Find x, if : `(root(3)( 2/3))^( x - 1 ) = 27/8`
Solution
`(root(3)( 2/3))^( x - 1 ) = 27/8`
`[(2/3)^(1/3)]^( x - 1 ) = 3^3/2^3`
⇒ `(2/3)^[( x - 1 )/3] = (3/2)^3`
⇒ `(2/3)^[( x - 1 )/3] = (2/3)^-3`
We know that if bases are equal, the powers are equal
⇒ `[ x - 1 ]/3 = -3`
⇒ x - 1 = - 9
⇒ x = - 9 + 1
⇒ x = - 8
APPEARS IN
RELATED QUESTIONS
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
Solve : `(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
Solve for x:
`2^(3x + 3) = 2^(3x + 1) + 48`
Solve for x : 3(2x + 1) - 2x + 2 + 5 = 0
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
Solve for x:
22x+1= 8
Solve for x:
9 x 81x = `(1)/(27^(x - 3)`
Find the value of k in each of the following:
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.