Advertisements
Advertisements
Question
Find x, if : `( sqrt(3/5))^( x + 1) = 125/27`
Solution
`( sqrt(3/5))^( x + 1) = 125/27`
⇒ `[(3/5)^(1/2)]^( x + 1 ) = [ 5 xx 5 xx 5 ]/[ 3 xx 3 xx 3]`
⇒ `(3/5)^[( x + 1 )/2] = (5/3)^3`
⇒ `(3/5)^[( x + 1 )/2] = (3/5)^- 3`
We know that if bases are equal, the powers are equal
⇒ `[ x + 1 ]/2 = -3`
⇒ x + 1 = - 6
⇒ x = - 6 - 1
⇒ x = - 7
APPEARS IN
RELATED QUESTIONS
Solve for x : 25x-1 = 4 23x + 1
Solve for x: `4^(x-1) × (0.5)^(3 - 2x) = (1/8)^-x`
Solve for x : 3(2x + 1) - 2x + 2 + 5 = 0
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
Evaluate the following:
`(2^3 xx 3^5 xx 24^2)/(12^2 xx 18^3 xx 27)`
Evaluate the following:
`(1 - 15/64)^(-1/2)`
Evaluate the following:
`(8/27)^((-2)/3) - (1/3)^-2 - 7^0`
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
Find the value of (8p)p if 9p + 2 - 9p = 240.
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.