Advertisements
Advertisements
Question
Evaluate the following:
`(8/27)^((-2)/3) - (1/3)^-2 - 7^0`
Solution
`(8/27)^((-2)/3) - (1/3)^-2 - 7^0`
= `(27/8)^(2/3) - (3)^2 - 1`
= `(3/2)^(3 xx 2/3) - 9 - 1`
= `(3/2)^2 - 10`
= `(9)/(4) - 10`
= `(9 - 40)/(4)`
= `(-31)/(4)`.
APPEARS IN
RELATED QUESTIONS
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
Solve : 8 x 22x + 4 x 2x + 1 = 1 + 2x
Solve for x : `(81)^(3/4) - (1/32)^(-2/5) + x(1/2)^(-1).2^0 = 27`
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
Solve : 3x-1× 52y-3 = 225.
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Solve for x:
p3 x p-2 = px
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
Prove the following:
`sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)` = 1