Advertisements
Advertisements
Question
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0
Sum
Solution
x = `3^(2/3) + 3^(1/3)`
⇒ x3 = `3^2 + 3 + 3 xx 3^(2/3) xx 3^(1/3)(3^(2/3) + 3^(1/3))`
⇒ x3 = `9 + 3 + 3 xx 3^(2/3 + 1/3)(x)`
⇒ x3 = 12 + 9x
⇒ x3 - 9x - 12 = 0.
shaalaa.com
Solving Exponential Equations
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Solve for x : 25x-1 = 4 23x + 1
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
Solve : 3x-1× 52y-3 = 225.
Evaluate the following:
`9^(5/2) - 3 xx 5^0 - (1/81)^((-1)/2)`
Solve for x:
22x+3 - 9 x 2x + 1 = 0
Solve for x:
22x- 1 − 9 x 2x − 2 + 1 = 0
Solve for x:
9x+4 = 32 x (27)x+1
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`