Advertisements
Advertisements
Question
Solve for x:
22x- 1 − 9 x 2x − 2 + 1 = 0
Solution
22x − 1 − 9 x 2x − 2 + 1= 0
22x . 2−1 − 9 x 2x . 2−2 + 1 = 0
Let 2x = t, so 22x = t2
So, 22x . 2−1 − 9 x 2x . 2−2 + 1 = 0 becomes `"t"^2/(2) - 9 xx "t"/(2^2) + 1` = 0
⇒ `"t"^2/(2) - (9"t")/(4) + 1`= 0
⇒ 2t2 − 9t + 4 = 0
⇒ 2t2 − 8t − t + 4 = 0
⇒ 2t(t − 4) − 1(t − 4) = 0
⇒ (t − 4)(2t − 1) = 0
⇒ t − 4 = 0 or 2t − 1 = 0
⇒ t = 4 or `"t" = (1)/(2)`
So, 2x = 4 or 2x = `(1)/(2)`
⇒ 2x = 22 or 2x = 2−1
⇒ x = 2 or x = −1.
APPEARS IN
RELATED QUESTIONS
Solve for x : 22x+1 = 8
Solve : `(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
Solve for x:
`2^(3x + 3) = 2^(3x + 1) + 48`
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
If `((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y` , find x + y.
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Evaluate the following:
`(2^6 xx 5^-4 xx 3^-3 xx 4^2)/(8^3 xx 15^-3 xx 25^-1)`
If 2x = 3y = 12z ; show that `(1)/z = (1)/y + (2)/x`.
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`