Advertisements
Advertisements
Question
If 2x = 3y = 12z ; show that `(1)/z = (1)/y + (2)/x`.
Solution
Let 2x = 3y = 12z = k
⇒ `2 = "k"^(1/x), 3 = "k"^(1/y), 12 = "k"^(1/z)`
Now , 12 = 2 x 2 x 3
⇒ `"k"^(1/z) = "k"^(1/x) xx "k"^(1/x) xx "k"^(1/y)`
⇒ `(1)/z = (1)/x + (1)/x + (1)/y`
⇒ `(1)/z = (2)/x + (1)/y`.
APPEARS IN
RELATED QUESTIONS
Solve : 22x + 2x+2 - 4 x 23 = 0
Solve : `(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
If 5-P = 4-q = 20r, show that : `1/p + 1/q + 1/r = 0`
If ax = b, by = c and cz = a, prove that : xyz = 1.
Solve : 3x-1× 52y-3 = 225.
Solve for x:
9 x 81x = `(1)/(27^(x - 3)`
If a = `2^(1/3) - 2^((-1)/3)`, prove that 2a3 + 6a = 3
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1