Advertisements
Advertisements
Question
If ax = b, by = c and cz = a, prove that : xyz = 1.
Solution
We are given that
ax = b, by = c and cz = a
Consider the equation
ax = b
⇒ axyz = byz [ raising to the power yz on both sides ]
⇒ axyz = (by)z
⇒ axyz = cz [ ∵ by = c ]
⇒ axyz = cz
⇒ axyz = a [ ∵ cz = a ]
⇒ axyz = a1
⇒ xyz = 1
APPEARS IN
RELATED QUESTIONS
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
Find x, if : `sqrt( 2^( x + 3 )) = 16`
Solve : 22x + 2x+2 - 4 x 23 = 0
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
Evaluate : `4/(216)^(-2/3) + 1/(256)^(-3/4) + 2/(243)^(-1/5)`
Evaluate the following:
`(1 - 15/64)^(-1/2)`
Solve for x:
3 x 7x = 7 x 3x
Find the value of k in each of the following:
`(root(3)(8))^((-1)/(2)` = 2k
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1