Advertisements
Advertisements
Question
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
Solution
Let ax = by = cz = k
∴ a = `k^(1/x) ; b = k^(1/y) ; c = k^(1/z)`
Also, We have b2 = ac
∴ `( k^(1/y))^2 = ( k^(1/x)) xx ( k^(1/z))`
⇒ `k^(2/y) = k^( 1/x + 1/z )`
⇒ `k^(2/y) = k^[ z + x ]/[ xz ]`
Comparing the powers we have
`2/y = [ z + x ]/[ xz ]`
⇒ `y = [ 2 xz ]/[ z + x ]`
APPEARS IN
RELATED QUESTIONS
Find x, if : `sqrt( 2^( x + 3 )) = 16`
Find x, if : `(root(3)( 2/3))^( x - 1 ) = 27/8`
Solve for x:
`2^(3x + 3) = 2^(3x + 1) + 48`
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Solve for x:
`"p"^-5 = (1)/"p"^(x + 1)`
Solve for x:
22x- 1 − 9 x 2x − 2 + 1 = 0
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1