Advertisements
Advertisements
प्रश्न
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
उत्तर
Let ax = by = cz = k
∴ a = `k^(1/x) ; b = k^(1/y) ; c = k^(1/z)`
Also, We have b2 = ac
∴ `( k^(1/y))^2 = ( k^(1/x)) xx ( k^(1/z))`
⇒ `k^(2/y) = k^( 1/x + 1/z )`
⇒ `k^(2/y) = k^[ z + x ]/[ xz ]`
Comparing the powers we have
`2/y = [ z + x ]/[ xz ]`
⇒ `y = [ 2 xz ]/[ z + x ]`
APPEARS IN
संबंधित प्रश्न
Solve for x : 22x+1 = 8
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
Find x, if : 42x = `1/32`
Solve : `[3^x]^2` : 3x = 9 : 1
Solve for x : (a3x + 5)2. (ax)4 = a8x + 12
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
Find the value of k in each of the following:
`root(4)root(3)(x^2)` = xk
Find the value of k in each of the following:
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1