Advertisements
Advertisements
प्रश्न
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
उत्तर
2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4`
2x = 4y = 8z
⇒ 2x = 22y = 23z
⇒ x = 2y = 3z
⇒ y = `x/2 and z = x/3`
Now, `1/(2x) + 1/(4y) + 1/(8z) = 4`
⇒ `1/(2x) + 1/[(4x)/2] + 1/[(8x)/3] = 4`
⇒ `1/(2x) + 2/(4x) + 3/(8x) = 4`
⇒ `1/(2x) + 1/(2x) + 3/(8x) = 4`
⇒ `[ 4 + 4 + 3 ]/(8x) = 4`
⇒ `11/(8x) = 4`
⇒ x = `11/32`.
APPEARS IN
संबंधित प्रश्न
Solve : `[3^x]^2` : 3x = 9 : 1
Solve for x: `4^(x-1) × (0.5)^(3 - 2x) = (1/8)^-x`
Solve for x:
`2^(3x + 3) = 2^(3x + 1) + 48`
If 4x + 3 = 112 + 8 × 4x, find the value of (18x)3x.
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
Evaluate the following:
`(2^3 xx 3^5 xx 24^2)/(12^2 xx 18^3 xx 27)`
Evaluate the following:
`(8/27)^((-2)/3) - (1/3)^-2 - 7^0`
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`