Advertisements
Advertisements
प्रश्न
Solve for x: `4^(x-1) × (0.5)^(3 - 2x) = (1/8)^-x`
उत्तर
`4^(x-1) × (0.5)^(3 - 2x) = (1/8)^-x`
⇒ `(2)^(2^(x - 1)) xx (5/10)^(3 - 2x ) = ( 1/2^3 )^(-x)`
⇒ `(2)^(2x - 2)(2^-1)^(3 - 2x)=(2^-3)^-x`
⇒ `(2)^(2x - 2)(2)^(-3 + 2x)=(2)^(3x)`
⇒ `2^(2x - 2 - 3 + 2x) = (2)^(3x)`
⇒ 2x - 2 - 3 + 2x = 3x
⇒ 4x - 5 = 3x
⇒ 4x - 3x = 5
⇒ x = 5
APPEARS IN
संबंधित प्रश्न
Solve for x : 25x-1 = 4 23x + 1
Solve : `[3^x]^2` : 3x = 9 : 1
Find the values of m and n if :
`4^(2m) = ( root(3)(16))^(-6/n) = (sqrt8)^2`
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
If 3x + 1 = 9x - 3 , find the value of 21 + x.
Solve for x:
2x + 3 + 2x + 1 = 320
Solve for x:
`"p"^-5 = (1)/"p"^(x + 1)`
Solve for x:
22x- 1 − 9 x 2x − 2 + 1 = 0
Find the value of k in each of the following:
`root(4)root(3)(x^2)` = xk
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1