Advertisements
Advertisements
प्रश्न
Solve for x:
`"p"^-5 = (1)/"p"^(x + 1)`
उत्तर
`"p"^-5 = (1)/"p"^(x + 1)`
⇒ p-5 x px + 1 = 1
⇒ `"p"^(-5 + x +1)` = 1
⇒ px-4 = p0
⇒ x - 4 = 0
⇒ x = 4.
APPEARS IN
संबंधित प्रश्न
Solve for x : (49)x + 4 = 72 x (343)x + 1
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
Solve : 3x-1× 52y-3 = 225.
Solve for x:
`9 xx 3^x = (27)^(2x - 5)`
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
If ax = by = cz and abc = 1, show that
`(1)/x + (1)/y + (1)/z` = 0.
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
If 2400 = 2x x 3y x 5z, find the numerical value of x, y, z. Find the value of 2-x x 3y x 5z as fraction.