Advertisements
Advertisements
प्रश्न
If ax = by = cz and abc = 1, show that
`(1)/x + (1)/y + (1)/z` = 0.
उत्तर
ax = by = cz
So, ax = by ⇒ a =`"b"^(y/x) .....("Using" "a"^(1/"n") = root("n")("a"))`
by = cz ⇒ c = `"b"^(y/z) .....("Using" "a"^(1/"n") = root("n")("a"))`
and abc = 1
⇒ `"b"^(y/x) · "b"·"b"^(y/z)` = 1
⇒ `"b"^(y/x) · "b"·"b"^(y/z)` = 1
⇒ `"b"^(y/x + 1 + y/z)` = b° ......(Using a° = 1)
⇒ `y/x + 1 + y/z` = 0
Divide throughout by y.
⇒ `(1)/x + (1)/y + (1)/z` = 0
Hence proved.
APPEARS IN
संबंधित प्रश्न
Solve : `[3^x]^2` : 3x = 9 : 1
Solve : 22x + 2x+2 - 4 x 23 = 0
Solve for x : (a3x + 5)2. (ax)4 = a8x + 12
Solve for x : 3(2x + 1) - 2x + 2 + 5 = 0
If 3x + 1 = 9x - 3 , find the value of 21 + x.
Evaluate the following:
`(4^3 xx 3^7 xx 5^6)/(5^8 xx 2^7 xx 3^3)`
Evaluate the following:
`(1 - 15/64)^(-1/2)`
Evaluate the following:
`9^(5/2) - 3 xx 5^0 - (1/81)^((-1)/2)`
Solve for x:
`9 xx 3^x = (27)^(2x - 5)`
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1