हिंदी

If Ax = by = Cz and Abc = 1, Show that 1 X + 1 Y + 1 Z = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

If ax = by = cz and abc = 1, show that

`(1)/x + (1)/y + (1)/z` = 0.

योग

उत्तर

ax = by = cz 

So, ax = by ⇒ a =`"b"^(y/x)      .....("Using" "a"^(1/"n") = root("n")("a"))`

by = cz ⇒ c = `"b"^(y/z)      .....("Using" "a"^(1/"n") = root("n")("a"))`

and abc = 1

⇒ `"b"^(y/x) · "b"·"b"^(y/z)` = 1

⇒ `"b"^(y/x) · "b"·"b"^(y/z)` = 1

⇒ `"b"^(y/x + 1 + y/z)` = b°   ......(Using a° = 1)

⇒ `y/x + 1 + y/z` = 0
Divide throughout by y.
⇒ `(1)/x + (1)/y + (1)/z` = 0
Hence proved.

shaalaa.com
Solving Exponential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Indices - Exercise 9.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 9 Indices
Exercise 9.1 | Q 17
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×