Advertisements
Advertisements
प्रश्न
If `x^(1/3) + y^(1/3) + z^(1/3) = 0`, prove that (x + y + z)3 = 27xyz
उत्तर
`x^(1/3) + y^(1/3) + z^(1/3)` = 0
⇒ `(x^(1/3) + y^(1/3)) + z^(1/3)` = 0 cubing both sides, we get :
⇒ `(x^(1/3) + y^(1/3))^3 + z + 3 (x^(1/3) + y^(1/3)) z^(1/3) (x^(1/3) + y^(1/3) + z^(1/3))` = 0
⇒ `x + y+ 3 x^(1/3)y^(1/3) (x^(1/3) + y^(1/3)) + z + 0` = 0
⇒ `x + y+ 3 x^(1/3)y^(1/3)(-z^(1/3)) + z` = 0 ...(Using the given condition again)
⇒ x + y + z = `3 x^(1/3)y^(1/3)z^(1/3)`
⇒ (x + y + z)3 = 27xyz.
APPEARS IN
संबंधित प्रश्न
Solve : `[3^x]^2` : 3x = 9 : 1
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
Evaluate : `[(-2/3)^-2]^3 xx (1/3)^-4 xx 3^-1 xx 1/6`
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
Evaluate the following:
`(4^3 xx 3^7 xx 5^6)/(5^8 xx 2^7 xx 3^3)`
Evaluate the following:
`(27)^(2/3) xx 8^((-1)/6) ÷ 18^((-1)/2)`
Solve for x:
`9 xx 3^x = (27)^(2x - 5)`
Solve for x:
2x + 3 + 2x + 1 = 320
Solve for x:
9x+4 = 32 x (27)x+1
If 2400 = 2x x 3y x 5z, find the numerical value of x, y, z. Find the value of 2-x x 3y x 5z as fraction.