Advertisements
Advertisements
प्रश्न
If `x^(1/3) + y^(1/3) + z^(1/3) = 0`, prove that (x + y + z)3 = 27xyz
उत्तर
`x^(1/3) + y^(1/3) + z^(1/3)` = 0
⇒ `(x^(1/3) + y^(1/3)) + z^(1/3)` = 0 cubing both sides, we get :
⇒ `(x^(1/3) + y^(1/3))^3 + z + 3 (x^(1/3) + y^(1/3)) z^(1/3) (x^(1/3) + y^(1/3) + z^(1/3))` = 0
⇒ `x + y+ 3 x^(1/3)y^(1/3) (x^(1/3) + y^(1/3)) + z + 0` = 0
⇒ `x + y+ 3 x^(1/3)y^(1/3)(-z^(1/3)) + z` = 0 ...(Using the given condition again)
⇒ x + y + z = `3 x^(1/3)y^(1/3)z^(1/3)`
⇒ (x + y + z)3 = 27xyz.
APPEARS IN
संबंधित प्रश्न
Solve : 8 x 22x + 4 x 2x + 1 = 1 + 2x
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
Find the values of m and n if :
`4^(2m) = ( root(3)(16))^(-6/n) = (sqrt8)^2`
Evaluate the following:
`(1 - 15/64)^(-1/2)`
Evaluate the following:
`(27)^(2/3) xx 8^((-1)/6) ÷ 18^((-1)/2)`
Find the value of k in each of the following:
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
If 2400 = 2x x 3y x 5z, find the numerical value of x, y, z. Find the value of 2-x x 3y x 5z as fraction.
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1