Advertisements
Advertisements
प्रश्न
Solve : 8 x 22x + 4 x 2x + 1 = 1 + 2x
उत्तर
8 x 22x + 4 x 2x + 1 = 1 + 2x
⇒ 8 x `(2^x)^2` + 4 x 2x x 21 = 1 + 2x
⇒ 8 x `(2^x)^2` + 4 x 2x x 21 - 1 - 2x = 0
⇒ 8 x `(2^x)^2` + 2x x ( 8 - 1 ) - 1 = 0
⇒ 8 x `(2^x)^2` + 7( 2x ) - 1 = 0
⇒ 8y2 + 7y - 1 = 0 [ y = 2x ]
⇒ 8y2 + 8y - y - 1 = 0
⇒ 8y( y + 1 ) - 1( y + 1 ) = 0
⇒ ( 8y - 1 )( y + 1 ) = 0
⇒ 8y = 1 or y = - 1
⇒ y = `1/8` or y = -1
⇒ 2x = `1/8` or 2x = - 1
⇒ 2x = `1/2^3` or 2x = - 1
⇒ 2x = `2^-3` or 2x = - 1
⇒ x = - 3
[ ∵ 2x = - 1 is not possible. ]
APPEARS IN
संबंधित प्रश्न
If 5-P = 4-q = 20r, show that : `1/p + 1/q + 1/r = 0`
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
If `((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y` , find x + y.
Evaluate : `4/(216)^(-2/3) + 1/(256)^(-3/4) + 2/(243)^(-1/5)`
Solve for x:
`sqrt((8^0 + 2/3)` = (0.6)2-3x
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
If ax = by = cz and abc = 1, show that
`(1)/x + (1)/y + (1)/z` = 0.
If 2x = 3y = 12z ; show that `(1)/z = (1)/y + (2)/x`.
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`
Prove the following:
`("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`