Advertisements
Advertisements
प्रश्न
Solve : 22x + 2x+2 - 4 x 23 = 0
उत्तर
22x + 2x+2 - 4 x 23 = 0
⇒ ( 2x)2 + 2x. 22 - 4 x 2 x 2 x 2 = 0
⇒ ( 2x)2 + 2x. 22 - 32 = 0
Putting y = 2x
⇒ y2 + 4y - 32 = 0
⇒ y2 + 8y - 4y - 32 = 0
⇒ y( y + 8 ) - 4( y + 8 ) = 0
⇒ ( y + 8 )( y - 4 ) = 0
⇒ y + 8 = 0 or y - 4 = 0
⇒ y = - 8 or y = 4
⇒ 2x = - 8 or 2x = 4
⇒ 2x = 22
[ ∵ 2x = - 8 is not possible. ]
⇒ x = 2.
APPEARS IN
संबंधित प्रश्न
Solve : 4x - 2 - 2x + 1 = 0
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
If ax = b, by = c and cz = a, prove that : xyz = 1.
Evaluate : `4/(216)^(-2/3) + 1/(256)^(-3/4) + 2/(243)^(-1/5)`
Evaluate the following:
`(4^3 xx 3^7 xx 5^6)/(5^8 xx 2^7 xx 3^3)`
Solve for x:
2x + 3 + 2x + 1 = 320
Solve for x:
22x + 2x +2 - 4 x 23 = 0
Solve for x:
9x+4 = 32 x (27)x+1
Find the value of k in each of the following:
`(root(3)(8))^((-1)/(2)` = 2k
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1