Advertisements
Advertisements
प्रश्न
Solve : `(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
उत्तर
`(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
⇒ `(3^(1/2))^( x - 3 ) = (3^(1/4))^( x + 1 )`
⇒ `3^[( x - 3)/2] = 3^[( x + 1 )/4]`
⇒ `[ x - 3 ]/2 = [ x + 1 ]/4`
⇒ 4( x - 3 ) = 2( x + 1 )
⇒ 4x - 12 = 2x + 2
⇒ 4x - 2x = 12 + 2
⇒ 2x = 14
⇒ x = `14/2`
⇒ x = 7
APPEARS IN
संबंधित प्रश्न
Find x, if : `(root(3)( 2/3))^( x - 1 ) = 27/8`
Solve for x : `(81)^(3/4) - (1/32)^(-2/5) + x(1/2)^(-1).2^0 = 27`
Solve for x : 3(2x + 1) - 2x + 2 + 5 = 0
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
Evaluate the following:
`(2^6 xx 5^-4 xx 3^-3 xx 4^2)/(8^3 xx 15^-3 xx 25^-1)`
Evaluate the following:
`16^(3/4) + 2(1/2)^-1 xx 3^0`
Solve for x:
2x + 3 + 2x + 1 = 320
Solve for x:
22x+3 - 9 x 2x + 1 = 0
Solve for x:
22x + 2x +2 - 4 x 23 = 0