Advertisements
Advertisements
प्रश्न
Solve : `(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
उत्तर
`(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
⇒ `(3^(1/2))^( x - 3 ) = (3^(1/4))^( x + 1 )`
⇒ `3^[( x - 3)/2] = 3^[( x + 1 )/4]`
⇒ `[ x - 3 ]/2 = [ x + 1 ]/4`
⇒ 4( x - 3 ) = 2( x + 1 )
⇒ 4x - 12 = 2x + 2
⇒ 4x - 2x = 12 + 2
⇒ 2x = 14
⇒ x = `14/2`
⇒ x = 7
APPEARS IN
संबंधित प्रश्न
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
If 4x + 3 = 112 + 8 × 4x, find the value of (18x)3x.
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Evaluate the following:
`16^(3/4) + 2(1/2)^-1 xx 3^0`
Solve for x:
`9 xx 3^x = (27)^(2x - 5)`
Solve for x:
3 x 7x = 7 x 3x
Solve for x:
`sqrt((8^0 + 2/3)` = (0.6)2-3x
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1