Advertisements
Advertisements
Question
Solve : `(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
Solution
`(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
⇒ `(3^(1/2))^( x - 3 ) = (3^(1/4))^( x + 1 )`
⇒ `3^[( x - 3)/2] = 3^[( x + 1 )/4]`
⇒ `[ x - 3 ]/2 = [ x + 1 ]/4`
⇒ 4( x - 3 ) = 2( x + 1 )
⇒ 4x - 12 = 2x + 2
⇒ 4x - 2x = 12 + 2
⇒ 2x = 14
⇒ x = `14/2`
⇒ x = 7
APPEARS IN
RELATED QUESTIONS
Solve : 4x - 2 - 2x + 1 = 0
Solve : 8 x 22x + 4 x 2x + 1 = 1 + 2x
Solve for x:
`2^(3x + 3) = 2^(3x + 1) + 48`
If 4x + 3 = 112 + 8 × 4x, find the value of (18x)3x.
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
If 3x + 1 = 9x - 3 , find the value of 21 + x.
Evaluate the following:
`(4^3 xx 3^7 xx 5^6)/(5^8 xx 2^7 xx 3^3)`
Evaluate the following:
`(1 - 15/64)^(-1/2)`
Evaluate the following:
`(27)^(2/3) xx 8^((-1)/6) ÷ 18^((-1)/2)`
If a = `2^(1/3) - 2^((-1)/3)`, prove that 2a3 + 6a = 3