Advertisements
Advertisements
Question
Find the values of m and n if :
`4^(2m) = ( root(3)(16))^(-6/n) = (sqrt8)^2`
Solution
`4^(2"m") = ( root(3)(16))^(-6/"n") = (sqrt8)^2`
⇒ `4^(2"m") = (sqrt8)^2` ....(1)
and
`(root(3)(16))^(-6/n) = (sqrt8)^2` ....(2)
From (1)
`4^(2"m") = (sqrt8)^2`
⇒ `(2^2)^(2"m") = (sqrt(2^3))^2`
⇒ `2^(4"m") = [(2^3)^(1/2)]^2`
⇒ `2^(4"m") = [ 2^( 3 xx 1/2 )]^2`
⇒ `2^(4"m") = 2^( 3 xx 1/2 xx 2)`
⇒ `2^(4"m") = 2^3`
⇒ 4m = 3
⇒ m = `3/4`
From (2), We have
`(3sqrt(16))^(-6/"n") = (sqrt8)^2`
⇒ `( root(3)(2 xx 2 xx 2 xx 2))^(-6/"n") = (sqrt( 2 xx 2 xx 2))^2`
⇒ `( root(3)(2^4))^(-6/"n") = ( sqrt(2^3))^2`
⇒ `[(2^4)^(1/3)]^(-6/"n") = [(2^3)^(1/2)]^2`
⇒ `[2^(4/3)]^(-6/"n") = [2^(3/2)]^2`
⇒ `2^( 4/3 xx ( - 6/"n" ) = 2^(3/2 xx 2)`
⇒ `2^(-8/"n") = 2^3`
⇒ `-8/"n" = 3`
⇒ ` "n" = -8/3 "Thus m" = 3/4"n" = - 8/3`
APPEARS IN
RELATED QUESTIONS
Evaluate : `[(-2/3)^-2]^3 xx (1/3)^-4 xx 3^-1 xx 1/6`
If `((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y` , find x + y.
If 3x + 1 = 9x - 3 , find the value of 21 + x.
Evaluate the following:
`(1 - 15/64)^(-1/2)`
Evaluate the following:
`(8/27)^((-2)/3) - (1/3)^-2 - 7^0`
Solve for x:
3 x 7x = 7 x 3x
Solve for x:
22x- 1 − 9 x 2x − 2 + 1 = 0
Find the value of k in each of the following:
`(sqrt(9))^-7 xx (sqrt(3))^-5` = 3k
If 2400 = 2x x 3y x 5z, find the numerical value of x, y, z. Find the value of 2-x x 3y x 5z as fraction.
Prove the following:
`("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`