Advertisements
Advertisements
प्रश्न
Find the values of m and n if :
`4^(2m) = ( root(3)(16))^(-6/n) = (sqrt8)^2`
उत्तर
`4^(2"m") = ( root(3)(16))^(-6/"n") = (sqrt8)^2`
⇒ `4^(2"m") = (sqrt8)^2` ....(1)
and
`(root(3)(16))^(-6/n) = (sqrt8)^2` ....(2)
From (1)
`4^(2"m") = (sqrt8)^2`
⇒ `(2^2)^(2"m") = (sqrt(2^3))^2`
⇒ `2^(4"m") = [(2^3)^(1/2)]^2`
⇒ `2^(4"m") = [ 2^( 3 xx 1/2 )]^2`
⇒ `2^(4"m") = 2^( 3 xx 1/2 xx 2)`
⇒ `2^(4"m") = 2^3`
⇒ 4m = 3
⇒ m = `3/4`
From (2), We have
`(3sqrt(16))^(-6/"n") = (sqrt8)^2`
⇒ `( root(3)(2 xx 2 xx 2 xx 2))^(-6/"n") = (sqrt( 2 xx 2 xx 2))^2`
⇒ `( root(3)(2^4))^(-6/"n") = ( sqrt(2^3))^2`
⇒ `[(2^4)^(1/3)]^(-6/"n") = [(2^3)^(1/2)]^2`
⇒ `[2^(4/3)]^(-6/"n") = [2^(3/2)]^2`
⇒ `2^( 4/3 xx ( - 6/"n" ) = 2^(3/2 xx 2)`
⇒ `2^(-8/"n") = 2^3`
⇒ `-8/"n" = 3`
⇒ ` "n" = -8/3 "Thus m" = 3/4"n" = - 8/3`
APPEARS IN
संबंधित प्रश्न
Solve : 4x - 2 - 2x + 1 = 0
Solve : 22x + 2x+2 - 4 x 23 = 0
If `((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y` , find x + y.
Evaluate the following:
`(1 - 15/64)^(-1/2)`
Evaluate the following:
`9^(5/2) - 3 xx 5^0 - (1/81)^((-1)/2)`
Solve for x:
`sqrt((8^0 + 2/3)` = (0.6)2-3x
Find the value of k in each of the following:
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`
Prove the following:
`sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)` = 1