हिंदी

If ((A^-1b^2 )/(A^2b^-4))^7 ÷ (( A^3b^-5)/(A^-2b^3))^-5 = A^X . B^Y , Find X + Y. - Mathematics

Advertisements
Advertisements

प्रश्न

If `((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y` , find x + y.

योग

उत्तर

`((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y`

⇒ `((b^6)/( a^3))^7 ÷ ((a^5)/(b^8))^-5 = a^x . b^y`

⇒ `((b^6)/( a^3))^7 ÷ ((b^8)/(a^5))^5 = a^x . b^y`

⇒ `((b^42)/(a^21)) ÷ ((b^40)/(a^25)) = a^x . b^y`

⇒ `((b^42)/(a^21)) xx ((a^25)/(b^40)) = a^x . b^y`

⇒ b2 x a4 = ax x by
⇒ x = 4 and y = 2
⇒ x + y = 4 + 2 = 6

shaalaa.com
Solving Exponential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Indices (Exponents) - Exercise 7 (C) [पृष्ठ १०१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 7 Indices (Exponents)
Exercise 7 (C) | Q 4 | पृष्ठ १०१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×