Advertisements
Advertisements
प्रश्न
If `((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y` , find x + y.
उत्तर
`((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y`
⇒ `((b^6)/( a^3))^7 ÷ ((a^5)/(b^8))^-5 = a^x . b^y`
⇒ `((b^6)/( a^3))^7 ÷ ((b^8)/(a^5))^5 = a^x . b^y`
⇒ `((b^42)/(a^21)) ÷ ((b^40)/(a^25)) = a^x . b^y`
⇒ `((b^42)/(a^21)) xx ((a^25)/(b^40)) = a^x . b^y`
⇒ b2 x a4 = ax x by
⇒ x = 4 and y = 2
⇒ x + y = 4 + 2 = 6
APPEARS IN
संबंधित प्रश्न
Solve for x : 22x+1 = 8
Solve for x : 25x-1 = 4 23x + 1
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
Evaluate : `[(-2/3)^-2]^3 xx (1/3)^-4 xx 3^-1 xx 1/6`
Evaluate the following:
`(2^6 xx 5^-4 xx 3^-3 xx 4^2)/(8^3 xx 15^-3 xx 25^-1)`
Evaluate the following:
`16^(3/4) + 2(1/2)^-1 xx 3^0`
Solve for x:
3 x 7x = 7 x 3x
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`
Prove the following:
`sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)` = 1