Advertisements
Advertisements
प्रश्न
If `((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y` , find x + y.
उत्तर
`((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y`
⇒ `((b^6)/( a^3))^7 ÷ ((a^5)/(b^8))^-5 = a^x . b^y`
⇒ `((b^6)/( a^3))^7 ÷ ((b^8)/(a^5))^5 = a^x . b^y`
⇒ `((b^42)/(a^21)) ÷ ((b^40)/(a^25)) = a^x . b^y`
⇒ `((b^42)/(a^21)) xx ((a^25)/(b^40)) = a^x . b^y`
⇒ b2 x a4 = ax x by
⇒ x = 4 and y = 2
⇒ x + y = 4 + 2 = 6
APPEARS IN
संबंधित प्रश्न
Solve for x : (49)x + 4 = 72 x (343)x + 1
Solve for x : 3(2x + 1) - 2x + 2 + 5 = 0
Evaluate the following:
`(27)^(2/3) xx 8^((-1)/6) ÷ 18^((-1)/2)`
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Find the value of k in each of the following:
`(root(3)(8))^((-1)/(2)` = 2k
Find the value of k in each of the following:
`(sqrt(9))^-7 xx (sqrt(3))^-5` = 3k
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
If `x^(1/3) + y^(1/3) + z^(1/3) = 0`, prove that (x + y + z)3 = 27xyz
Find the value of 'a' and 'b' if:
`(sqrt243)^"a" ÷ 3^("b" + 1)` = 1 and `27^"b" - 81^(4 -"a"/2)` = 0
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1