Advertisements
Advertisements
प्रश्न
Solve for x : (49)x + 4 = 72 x (343)x + 1
उत्तर
(49)x + 4 = 72 x (343)x + 1
⇒ ( 7 x 7 )x + 4 = 72 ( 7 x 7 x 7 )( x + 1 )
⇒ ( 72 )x + 4 = 72( 73 )( x + 1 )
⇒ 7( 2x + 8 ) = 72 x 73x + 3
⇒ 7( 2x + 8 ) = 73x + 3 + 2
⇒ 7( 2x + 8 ) = 73x + 5
We know that if bases are equal, the powers are equal
⇒ 2x + 8 = 3x + 5
⇒ 3x - 2x = 8 - 5
⇒ x = 3
APPEARS IN
संबंधित प्रश्न
Find x, if : `sqrt( 2^( x + 3 )) = 16`
Evaluate : `[(-2/3)^-2]^3 xx (1/3)^-4 xx 3^-1 xx 1/6`
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
Evaluate the following:
`(1 - 15/64)^(-1/2)`
Evaluate the following:
`(8/27)^((-2)/3) - (1/3)^-2 - 7^0`
Evaluate the following:
`16^(3/4) + 2(1/2)^-1 xx 3^0`
Solve for x:
2x + 3 + 2x + 1 = 320
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1