Advertisements
Advertisements
प्रश्न
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
उत्तर
Let `root(x)("a") = root(y)("b") = root(z)("c")`
⇒ `"a"^(1/x) = "k", "b"^(1/y) = "k", "c"^(1/z) = "k"`
⇒ a = k, b = k, c = k
It is also given that abc = 1
⇒ kx x ky x kz = 1
⇒ `"k"^(x + y + z)` = k°
⇒ x + y + z = 0.
APPEARS IN
संबंधित प्रश्न
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
Find x, if : `(root(3)( 2/3))^( x - 1 ) = 27/8`
Solve for x : (a3x + 5)2. (ax)4 = a8x + 12
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
If `((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y` , find x + y.
Evaluate the following:
`(12^2 xx 75^-2 xx 35 xx 400)/(48^2 xx 15^-3 xx 525)`
Evaluate the following:
`(27)^(2/3) xx 8^((-1)/6) ÷ 18^((-1)/2)`
Solve for x:
22x+1= 8
Solve for x:
9x+4 = 32 x (27)x+1
Prove the following:
`sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)` = 1