Advertisements
Advertisements
प्रश्न
Prove the following:
`sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)` = 1
उत्तर
L.H.S.
= `sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)`
= `sqrt(y/x) · sqrt(z/y) · sqrt(x/z)` .....(Using (am)n = amn)
= `sqrt((y/x)(z/y)(x/z))`
= `sqrt(x^(1-1) · y^(1-1) · z^(1-1))`
= `sqrt(x^° · y^° · z^°)`
= `sqrt(1·1·1)`
= 1 ......(Using a° = 1)
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Solve for x : 25x-1 = 4 23x + 1
Find x, if : `sqrt( 2^( x + 3 )) = 16`
Solve : 4x - 2 - 2x + 1 = 0
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
Solve for x:
2x + 3 + 2x + 1 = 320
Solve for x:
`"p"^-5 = (1)/"p"^(x + 1)`
Solve for x:
`sqrt((8^0 + 2/3)` = (0.6)2-3x
Solve for x:
`sqrt((3/5)^(x + 3)) = (27^-1)/(125^-1)`
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1