Advertisements
Advertisements
प्रश्न
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
उत्तर
LHS = `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
= `(x^(a - b))^( a + b - c) xx (x^(b - c))^( b + c - a ) xx ( x^(c - a ))^( c + a - b)`
= `x^[( a - b )( a + b - c )] xx x^[( b - c )( b + c - a )] xx x^[( c - a )(c + a - b)]`
= `x^( a^2 + ab - ac - ab - b^2 + bc) xx x^(b^2 + bc - ab - cd - c^2 + ac) xx x^( c^2 + ac - bc - ac - a^2 + ab )`
= `x^(a^2 - ac - b^2 + bc + b^2 - ab - c^2 + ac + c^2 - bc - a^2 + ab )`
= x0
= 1
= RHS
APPEARS IN
संबंधित प्रश्न
Solve : 4x - 2 - 2x + 1 = 0
Solve for x: `4^(x-1) × (0.5)^(3 - 2x) = (1/8)^-x`
If 4x + 3 = 112 + 8 × 4x, find the value of (18x)3x.
Find the values of m and n if :
`4^(2m) = ( root(3)(16))^(-6/n) = (sqrt8)^2`
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
Evaluate the following:
`(8/27)^((-2)/3) - (1/3)^-2 - 7^0`
Evaluate the following:
`(27)^(2/3) xx 8^((-1)/6) ÷ 18^((-1)/2)`
Solve for x:
2x + 3 + 2x + 1 = 320
Find the value of k in each of the following:
`(root(3)(8))^((-1)/(2)` = 2k