Advertisements
Advertisements
प्रश्न
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
उत्तर
Consider the quation
`(sqrt32)^x ÷ 2^(y + 1) = 1`
⇒ `( sqrt(2 xx 2 xx 2 xx 2 xx 2))^x ÷ 2^(y + 1) = 1`
⇒ `( sqrt(2^5))^x ÷ 2^(y + 1) = 1`
⇒ `[(2^5)^(1/2)]^x ÷ 2^(y + 1) = x^0`
⇒ `2^(5x/2) ÷ 2^(y + 1 ) = x^0`
⇒ `(5x)/2 - ( y + 1) = 0`
⇒ 5x - 2( y + 1 ) = 0
⇒ 5x - 2y - 2 = 0 ....(1)
Now consider the other equation
`8^y - 16^( 4 - x/2 ) = 0`
⇒ `(2^3)^y - (2^4)^(4 - x/2) = 0`
⇒ `2^(3y) - 2^[4( 4 - x/2)] = 0`
⇒ `2^(3y) = 2^[4( 4 - x/2)]`
⇒ `3y = 4( 4 - x/2)`
⇒ 3y = 16 - 2x
⇒ 2x + 3y = 16 ...(2)
Thus, We have two equations,
5x - 2y = 2 ...(1)
2x + 3y = 16 ....(2)
Multiplying equation (1) by 3 and (2) by 2, We have
15x - 6y = 6 ....(3)
4x + 6y = 32 ....(4)
Adding equation (3) and (4), We have
19x = 38
⇒ x = 2
Substituting the value of x in equation (1), We have
5(2) - 2y = 2
⇒ 10 - 2y = 2
⇒ 2y = 10 - 2
⇒ 2y = 8
⇒ y = `8/2`
⇒ y = 4
Thus the values of x and y are : x = 2 and y = 4.
APPEARS IN
संबंधित प्रश्न
Find x, if : `sqrt( 2^( x + 3 )) = 16`
Solve for x : `(81)^(3/4) - (1/32)^(-2/5) + x(1/2)^(-1).2^0 = 27`
If ax = b, by = c and cz = a, prove that : xyz = 1.
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
Evaluate the following:
`9^(5/2) - 3 xx 5^0 - (1/81)^((-1)/2)`
Solve for x:
22x+1= 8
Solve for x:
22x+3 - 9 x 2x + 1 = 0
Solve for x:
`sqrt((8^0 + 2/3)` = (0.6)2-3x
Find the value of k in each of the following:
`(root(3)(8))^((-1)/(2)` = 2k
If 2x = 3y = 12z ; show that `(1)/z = (1)/y + (2)/x`.