Advertisements
Advertisements
प्रश्न
Solve for x : `(81)^(3/4) - (1/32)^(-2/5) + x(1/2)^(-1).2^0 = 27`
उत्तर
`(81)^(3/4) - (1/32)^(-2/5) + x(1/2)^(-1).2^0 = 27`
⇒ `3^(4 xx 3/4) - (2^- 5)^(-2/5) + x(2) = 27`
⇒ `3^3 - 2^2 + 2x = 27`
⇒ 2x + 27 - 4 = 27
⇒ 2x = 4
⇒ x = 2
APPEARS IN
संबंधित प्रश्न
Solve for x : 3(2x + 1) - 2x + 2 + 5 = 0
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
If `((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y` , find x + y.
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
Evaluate the following:
`(8/27)^((-2)/3) - (1/3)^-2 - 7^0`
Solve for x:
3 x 7x = 7 x 3x
Solve for x:
22x+3 - 9 x 2x + 1 = 0
Find the value of (8p)p if 9p + 2 - 9p = 240.
Find the value of 'a' and 'b' if:
`(sqrt243)^"a" ÷ 3^("b" + 1)` = 1 and `27^"b" - 81^(4 -"a"/2)` = 0
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1