Advertisements
Advertisements
प्रश्न
Solve for x:
22x+3 - 9 x 2x + 1 = 0
उत्तर
22x+3 - 9 x 2x + 1 = 0
22x . 23 - 9 x 2x + 1 = 0
Put2x = t, so, 22x = t2
So, 22x . 23 - 9 x 2x + 1 = 0 becomes 8t2 - 9t + 1 = 0
⇒ 8t2 - 8t - t + 1 = 0
⇒ 8t(t - 1) - (t - 1) = 0
⇒ t - 1 = 0 or 8t - 1 = 0
⇒ t = 1 or t = `(1)/(8)`
⇒ 2x = 1 or 2x = `(1)/(2^3)`
⇒ 2x = 20 or 2x = 2-3
⇒ x = 0 or x = -3.
APPEARS IN
संबंधित प्रश्न
Find x, if : `( sqrt(3/5))^( x + 1) = 125/27`
Solve for x : (a3x + 5)2. (ax)4 = a8x + 12
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`
If 2x = 3y = 12z ; show that `(1)/z = (1)/y + (2)/x`.
Prove the following:
`("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1