Advertisements
Advertisements
प्रश्न
Solve for x:
`9 xx 3^x = (27)^(2x - 5)`
उत्तर
9x 3x = (27)2x- 5
⇒ 32 x 3x = (33)2x- 5
⇒ 32 x 3x = `3^(3x^((2x - 5))`
⇒ 32+x = 36x-15
⇒ 1 = `(3^(6x - 15))/(3^(2 + x))`
⇒ 1 = `3^(6x - 15 - 2 - x)`
⇒ 30 = 35x-17
⇒ 5x 17 = 0
⇒ x = `(17)/(5)`.
APPEARS IN
संबंधित प्रश्न
Solve for x : (a3x + 5)2. (ax)4 = a8x + 12
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
Evaluate the following:
`(12^2 xx 75^-2 xx 35 xx 400)/(48^2 xx 15^-3 xx 525)`
Evaluate the following:
`(8/27)^((-2)/3) - (1/3)^-2 - 7^0`
Solve for x:
2x + 3 + 2x + 1 = 320
Solve for x:
22x+3 - 9 x 2x + 1 = 0
Find the value of k in each of the following:
`(sqrt(9))^-7 xx (sqrt(3))^-5` = 3k
If a = `2^(1/3) - 2^((-1)/3)`, prove that 2a3 + 6a = 3
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`