Advertisements
Advertisements
प्रश्न
Solve for x:
`9 xx 3^x = (27)^(2x - 5)`
उत्तर
9x 3x = (27)2x- 5
⇒ 32 x 3x = (33)2x- 5
⇒ 32 x 3x = `3^(3x^((2x - 5))`
⇒ 32+x = 36x-15
⇒ 1 = `(3^(6x - 15))/(3^(2 + x))`
⇒ 1 = `3^(6x - 15 - 2 - x)`
⇒ 30 = 35x-17
⇒ 5x 17 = 0
⇒ x = `(17)/(5)`.
APPEARS IN
संबंधित प्रश्न
Solve for x: `4^(x-1) × (0.5)^(3 - 2x) = (1/8)^-x`
If 4x + 3 = 112 + 8 × 4x, find the value of (18x)3x.
If m ≠ n and (m + n)-1 (m-1 + n-1) = mxny, show that : x + y + 2 = 0
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
Evaluate : `[(-2/3)^-2]^3 xx (1/3)^-4 xx 3^-1 xx 1/6`
Evaluate the following:
`(2^6 xx 5^-4 xx 3^-3 xx 4^2)/(8^3 xx 15^-3 xx 25^-1)`
Solve for x:
3 x 7x = 7 x 3x
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
Prove the following:
`("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1