Advertisements
Advertisements
प्रश्न
Prove the following:
`("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`
उत्तर
L.H.S.
= `("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`
= `"a"^("m"("m" + "n" - 1))/("a"^("n"("m"+"n" - 1)))·"a"^("n"("n" + 1 - "m"))/("a"^(1("n"+ 1 - "m")))·"a"^(1(1 + "m" - "n")) /"a"^("m"(1 + "m" - "n")) ` ......(Using(am)n = amn)
= `"a"^("m"^z + "mn" - "m")/"a"^("n"^z+"mn" - "n")·"a"^("n"^z - "mn" + "n")/"a"^("n"+1-"m")·"a"^(1 + "m" - "n")/"a"^("m"^z - "mn" + "m")`
= `"a"^("m"^z + "mn" - "m" - ("n"^z+"mn"-"n")) ·"a"^("n"^z - "mn" - ("n" + 1 - "m"))·"a"^(1+"m"-"n"-("m"^z-"mn"+"m"))` ....(Using am ÷ an = am-n)
= `"a"^("m"^z+"mn"-"m"-"n"^z-"mn"+"n")·"a"^("n"^z-"mn"+"n"-"n"-1+"m")·"a"^(1+"m"-"n"-"m"^z-"mn"+"m")`
= `"a"^("m"^z + "mn"-"m"-"n"^z-"mn"+"n"+"n"^z-"mn"+"n"-"n"-1+"m"+1+"m"-"n"-"m"^z+"mn"-"m")` ....(Using am x an = am+n)
= a°
= 1 .....(Using a° = 1)
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Solve : `(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
If 5-P = 4-q = 20r, show that : `1/p + 1/q + 1/r = 0`
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
Evaluate the following:
`(12^2 xx 75^-2 xx 35 xx 400)/(48^2 xx 15^-3 xx 525)`
Evaluate the following:
`(2^6 xx 5^-4 xx 3^-3 xx 4^2)/(8^3 xx 15^-3 xx 25^-1)`
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
Prove the following:
`sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)` = 1
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1