Advertisements
Advertisements
प्रश्न
Prove the following:
`("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`
उत्तर
L.H.S.
= `("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`
= `"a"^("m"("m" + "n" - 1))/("a"^("n"("m"+"n" - 1)))·"a"^("n"("n" + 1 - "m"))/("a"^(1("n"+ 1 - "m")))·"a"^(1(1 + "m" - "n")) /"a"^("m"(1 + "m" - "n")) ` ......(Using(am)n = amn)
= `"a"^("m"^z + "mn" - "m")/"a"^("n"^z+"mn" - "n")·"a"^("n"^z - "mn" + "n")/"a"^("n"+1-"m")·"a"^(1 + "m" - "n")/"a"^("m"^z - "mn" + "m")`
= `"a"^("m"^z + "mn" - "m" - ("n"^z+"mn"-"n")) ·"a"^("n"^z - "mn" - ("n" + 1 - "m"))·"a"^(1+"m"-"n"-("m"^z-"mn"+"m"))` ....(Using am ÷ an = am-n)
= `"a"^("m"^z+"mn"-"m"-"n"^z-"mn"+"n")·"a"^("n"^z-"mn"+"n"-"n"-1+"m")·"a"^(1+"m"-"n"-"m"^z-"mn"+"m")`
= `"a"^("m"^z + "mn"-"m"-"n"^z-"mn"+"n"+"n"^z-"mn"+"n"-"n"-1+"m"+1+"m"-"n"-"m"^z+"mn"-"m")` ....(Using am x an = am+n)
= a°
= 1 .....(Using a° = 1)
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Solve : 4x - 2 - 2x + 1 = 0
Solve : `[3^x]^2` : 3x = 9 : 1
Solve : 8 x 22x + 4 x 2x + 1 = 1 + 2x
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Solve for x:
5x2 : 5x = 25 : 1
Find the value of k in each of the following:
`(root(3)(8))^((-1)/(2)` = 2k
If a = `2^(1/3) - 2^((-1)/3)`, prove that 2a3 + 6a = 3
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
If ax = by = cz and abc = 1, show that
`(1)/x + (1)/y + (1)/z` = 0.