Advertisements
Advertisements
प्रश्न
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1
उत्तर
L.H.S.
= `("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`
= `"a"^("m"("m" + "n" - 1))/("a"^("n"("m"+"n" - 1)))·"a"^("n"("n" + 1 - "m"))/("a"^(1("n"+ 1 - "m")))·"a"^(1(1 + "m" - "n")) /"a"^("m"(1 + "m" - "n")) ` ......(Using(am)n = amn)
= `"a"^("m"^z + "mn" - "m")/"a"^("n"^z+"mn" - "n")·"a"^("n"^z - "mn" + "n")/"a"^("n"+1-"m")·"a"^(1 + "m" - "n")/"a"^("m"^z - "mn" + "m")`
= `"a"^("m"^z + "mn" - "m" - ("n"^z+"mn"-"n")) ·"a"^("n"^z - "mn" - ("n" + 1 - "m"))·"a"^(1+"m"-"n"-("m"^z-"mn"+"m"))` ....(Using am ÷ an = am-n)
= `"a"^("m"^z+"mn"-"m"-"n"^z-"mn"+"n")·"a"^("n"^z-"mn"+"n"-"n"-1+"m")·"a"^(1+"m"-"n"-"m"^z-"mn"+"m")`
= `"a"^("m"^z + "mn"-"m"-"n"^z-"mn"+"n"+"n"^z-"mn"+"n"-"n"-1+"m"+1+"m"-"n"-"m"^z+"mn"-"m")` ....(Using am x an = am+n)
= a°
= 1 .....(Using a° = 1)
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find x, if : `( sqrt(3/5))^( x + 1) = 125/27`
Find x, if : `(root(3)( 2/3))^( x - 1 ) = 27/8`
Solve for x : 9x+2 = 720 + 9x
Solve for x : (a3x + 5)2. (ax)4 = a8x + 12
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Find the value of k in each of the following:
`root(4)root(3)(x^2)` = xk
Find the value of k in each of the following:
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0