Advertisements
Advertisements
प्रश्न
Find the value of k in each of the following:
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
उत्तर
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
⇒ `(3^-1)^-4 ÷ (3^2)^((-1)/(2)` = 3k
⇒ `3^4 ÷ 3^((-2)/(3)` = 3k
⇒ `3^(4 + 2/3)` = 3k
⇒ `3^(14/3)` = 3k
⇒ k = `(14)/(3)`.
APPEARS IN
संबंधित प्रश्न
Find x, if : `( sqrt(3/5))^( x + 1) = 125/27`
Solve : 4x - 2 - 2x + 1 = 0
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
Evaluate the following:
`(8/27)^((-2)/3) - (1/3)^-2 - 7^0`
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
If `x^(1/3) + y^(1/3) + z^(1/3) = 0`, prove that (x + y + z)3 = 27xyz
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1