Advertisements
Advertisements
प्रश्न
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0
उत्तर
x = `3^(2/3) + 3^(1/3)`
⇒ x3 = `3^2 + 3 + 3 xx 3^(2/3) xx 3^(1/3)(3^(2/3) + 3^(1/3))`
⇒ x3 = `9 + 3 + 3 xx 3^(2/3 + 1/3)(x)`
⇒ x3 = 12 + 9x
⇒ x3 - 9x - 12 = 0.
APPEARS IN
संबंधित प्रश्न
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
Solve : `(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
If 3x + 1 = 9x - 3 , find the value of 21 + x.
Evaluate the following:
`(4^3 xx 3^7 xx 5^6)/(5^8 xx 2^7 xx 3^3)`
Evaluate the following:
`(2^6 xx 5^-4 xx 3^-3 xx 4^2)/(8^3 xx 15^-3 xx 25^-1)`
Solve for x:
22x- 1 − 9 x 2x − 2 + 1 = 0
Solve for x:
9x+4 = 32 x (27)x+1
Find the value of (8p)p if 9p + 2 - 9p = 240.
Prove the following:
`("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`