Advertisements
Advertisements
प्रश्न
If 3x + 1 = 9x - 3 , find the value of 21 + x.
उत्तर
3x + 1 = 9x - 3
⇒ 3x x 3 = ( 32 )x - 3
⇒ 3x x 3 = `3^(2x)/3^6`
⇒ `3^6 xx 3 = 3^(2x)/3^x `
⇒ `3^7 = 3^x`
⇒ x = 7
⇒ `2^( 1 + x ) = 2^( 1 + 7 ) = 2^8 = 256`
APPEARS IN
संबंधित प्रश्न
If 4x + 3 = 112 + 8 × 4x, find the value of (18x)3x.
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
Evaluate : `[(-2/3)^-2]^3 xx (1/3)^-4 xx 3^-1 xx 1/6`
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Evaluate the following:
`16^(3/4) + 2(1/2)^-1 xx 3^0`
Solve for x:
2x + 3 + 2x + 1 = 320
Solve for x:
`"p"^-5 = (1)/"p"^(x + 1)`
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`
Prove the following:
`("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1