Advertisements
Advertisements
प्रश्न
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1
उत्तर
L.H.S
= `(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"`
= `(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ x^"qr"/x^"pr"` .....(Using (am)n = amn)
= `(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) xx x^"pr"/x^"qr"`
= `(x^("pq"-"pr"))/x^("pq"- "qr") xx x^"pr"/x^"qr"`
= `(x^("pq"-"pr"+"pr"))/(x^("pq"-"qr"+"qr"` .....(Using am x an = am+n)
= `(x^("pq"))/(x^("pq")`
= 1
= R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
Solve : `[3^x]^2` : 3x = 9 : 1
If 4x + 3 = 112 + 8 × 4x, find the value of (18x)3x.
If m ≠ n and (m + n)-1 (m-1 + n-1) = mxny, show that : x + y + 2 = 0
If ax = b, by = c and cz = a, prove that : xyz = 1.
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Find the value of k in each of the following:
`(sqrt(9))^-7 xx (sqrt(3))^-5` = 3k
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1