Advertisements
Advertisements
प्रश्न
If m ≠ n and (m + n)-1 (m-1 + n-1) = mxny, show that : x + y + 2 = 0
उत्तर
(m + n)-1 (m-1 + n-1) = mxny
⇒ `1/( m + n ) xx ( 1/m + 1/n ) = m^x.n^y `
⇒ `1/( cancel(m + n) ) xx ((cancel(m + n))/(mn)) = m^x.n^y `
⇒ `1/(mn) = m^x.n^y`
⇒ `1/m xx 1/n = m^x.n^y`
⇒ `m^-1.n^-1 = m^x.n^y`
Comparing the coefficient of x and y, we get
x = - 1 and y = -1
Putting x = -1 and y = -1
x + y + 2
-1 + (- 1) + 2
- 1 - 1 + 2 = 0 L.H.S
APPEARS IN
संबंधित प्रश्न
Find x, if : `(root(3)( 2/3))^( x - 1 ) = 27/8`
Solve for x: `4^(x-1) × (0.5)^(3 - 2x) = (1/8)^-x`
If 5x + 1 = 25x - 2, find the value of 3x - 3 × 23 - x.
Evaluate the following:
`(4^3 xx 3^7 xx 5^6)/(5^8 xx 2^7 xx 3^3)`
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Solve for x:
22x+3 - 9 x 2x + 1 = 0
Solve for x:
22x + 2x +2 - 4 x 23 = 0
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1