Advertisements
Advertisements
प्रश्न
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`
बेरीज
उत्तर
Let ax = by = cz = k
⇒ `"a" = "k"^(1/x), "b" = "k"^(1/y), "c" = "k"^(1/2)`
It is also given that b2 = ac
⇒ `"k"^(2/y) = "k"^(1/x) xx "k"^(1/2)`
⇒ `"k"^(2/y) = "k"^(1/x + 1/z)`
⇒ `(2)/y = (1)/x + (1)/z`
⇒ y = `(2zx)/(z + x)`.
shaalaa.com
Solving Exponential Equations
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Find x, if : 42x = `1/32`
Find x, if : `sqrt( 2^( x + 3 )) = 16`
Solve : 4x - 2 - 2x + 1 = 0
Solve : `[3^x]^2` : 3x = 9 : 1
Solve for x : (a3x + 5)2. (ax)4 = a8x + 12
Solve for x:
22x+1= 8
Solve for x:
`9 xx 3^x = (27)^(2x - 5)`
Solve for x:
`sqrt((8^0 + 2/3)` = (0.6)2-3x
Find the value of k in each of the following:
`(sqrt(9))^-7 xx (sqrt(3))^-5` = 3k
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0