Advertisements
Advertisements
Question
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`
Solution
Let ax = by = cz = k
⇒ `"a" = "k"^(1/x), "b" = "k"^(1/y), "c" = "k"^(1/2)`
It is also given that b2 = ac
⇒ `"k"^(2/y) = "k"^(1/x) xx "k"^(1/2)`
⇒ `"k"^(2/y) = "k"^(1/x + 1/z)`
⇒ `(2)/y = (1)/x + (1)/z`
⇒ y = `(2zx)/(z + x)`.
APPEARS IN
RELATED QUESTIONS
Solve for x : (49)x + 4 = 72 x (343)x + 1
Solve for x:
`2^(3x + 3) = 2^(3x + 1) + 48`
If 5x + 1 = 25x - 2, find the value of 3x - 3 × 23 - x.
If ax = b, by = c and cz = a, prove that : xyz = 1.
Evaluate : `[(-2/3)^-2]^3 xx (1/3)^-4 xx 3^-1 xx 1/6`
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Evaluate the following:
`(4^3 xx 3^7 xx 5^6)/(5^8 xx 2^7 xx 3^3)`
Evaluate the following:
`(8/27)^((-2)/3) - (1/3)^-2 - 7^0`
Solve for x:
22x + 2x +2 - 4 x 23 = 0
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`